OIL AND GAS DRILLING ORDINANCE SECOND ERRATA TO INITIAL STUDY / MITIGATED NEGATIVE DECLARATION

Introduction

The City of Los Angeles (City) prepared an Initial Study and a Mitigated Negative Declaration (IS/MND) for the proposed Oil and Gas Drilling Ordinance (Oil Ordinance), Case No. ENV-2022-4865-MND. The IS/MND was prepared in accordance with CEQA (Public Resources Code §21000 et seq.) and the State CEQA Guidelines (Title 14, California Code of Regulations, §15000 et seq.).

The 30-day circulation period for public review and comment on the IS/MND was from September 15, 2022 to October 17, 2022. The IS/MND evaluates the impacts associated with the proposed Oil Ordinance ("Project") that would ban any new drilling and deem all existing oil and gas extraction a non-conforming use citywide within a 20-year amortization period.

On October 13, 2022, an Errata (Errata No. 1) was prepared to revise and/or correct certain information contained within the project description as well as data regarding the number and location of wells cited in the IS/MND. In response to public comment, the City has identified areas of additional amplification and clarification. Accordingly, these Errata (Errata No. 2) identify and document all necessary revisions to the IS/MND to add a new mitigation measure that will serve to further reduce air quality impacts referenced in the IS/MND. These Errata have been prepared by the City to fulfill its responsibility as the lead agency pursuant to California Environmental Quality Act (CEQA).

STATUTORY BACKGROUND (CEQA REQUIREMENTS)

The City of Los Angeles is the CEQA lead agency responsible for the Project. State CEQA Guidelines §15073.5(a) requires that a lead agency re-circulate a negative declaration "when the document must be substantially revised." A "substantial revision" includes: (1) identification of a new, avoidable significant effect requiring mitigation measures or project revisions and/or (2) determination that proposed mitigation measures or project revisions will not reduce potential effects to less than significance and new measures or revisions must be required. Recirculation is not required when new information is added to the negative declaration which merely clarifies, amplifies, or makes insignificant modifications to the negative declaration.

In response to the City's desire to maintain the intent of the Oil Ordinance while ensuring that air quality impacts remain less than significant during the abandonment of oil and gas wells, the changes identified below have been made to the Initial Study and

incorporated as part of the IS/MND. The IS/MND did not identify any significant air quality impacts. As such, the addition of the proposed mitigation measures is not required to reduce air quality impacts to less than significant. The mitigation measure is added only as an additional protection of the public health. The imposition of the proposed mitigation measures is not a change that modifies the analysis of environmental effects, the conclusion of the analysis, or the determination of the document that the proposed Project would not have a significant effect on the environment as it relates to air quality. None of the changes constitute substantial revisions that would require recirculation of the environmental document, as described in State CEQA Guidelines §15073.5.

CHANGES TO THE IS/MND

The following text changes are made to the Initial Study and incorporated as part of the IS/MND. The following changes are made to clarify the IS/MND based on comments received on the Project during the 30-day public review period and review of such comments by the lead agency. These changes further substantiate conclusions and/or clarify aspects of the previously circulated document. Recirculation of the IS/MND is not required as none of these changes reflect a determination of a new or more significant environmental impact than disclosed in the previously circulated IS/MND. Changes to the text are noted with <u>underline</u> and **bold** for added text.

The following text is inserted onto page 41 of the IS/MND and page 42 of the Project's Air Quality and GHG Technical Report (included as Appendix A to the IS/MND):

While no mitigation is required to reduce air quality impacts to less than significant, the City has determined the use of Tier 4 engines as stated in Mitigation Measure AQ-1 would reduce air quality emissions during abandonment, further protecting public health. As shown in Table 1 below, MM AQ-1 would serve to substantially reduce air quality emissions during abandonment, including particulate matter exhaust emissions. Specifically, particulate matter exhaust emissions would be reduced by approximately 68%. Tier 4 engines are currently in use on many construction sites and as older equipment is phased out over the 20-year amortization period, Tier 4 equipment will be more readily available for use during abandonment of wells. Furthermore, the use of Tier 4 engines is considered feasible and it has been included for many projects in the City and throughout the state. The SCAQMD has also recommended projects use Tier 4 equipment to reduce air quality emissions from off-road sources.

MM AQ-1 Emissions Standards for Off-Road Construction Equipment Greater than 50 Horsepower. All off-road diesel-powered construction equipment equal to or greater than 50 horsepower shall meet the U.S. Environmental Protection Agency's (USEPA) Tier 4 Final emission standards during abandonment of wells. Operators shall maintain records of all offroad equipment to document that each piece of equipment used meets these emission standards.

Table 1 Oil & Gas Well Abandonment Emissions (Per Well) – Pounds Per Day – With Tier 4 Equipment

Source	ROG	NOx	СО	SO ₂	PM10	PM2.5
Off-Road Equipment Emissions (Tier 4)	0.26	1.89	5.75	0.01	0.06	0.06
Off-Road Equipment Emissions (Draft IS/MND)	0.51	4.69	5.79	0.01	0.19	0.17
Emissions Reduction Due to Tier 4 (%)	49%	60%	0.7%	0%	68%	65%

Source: Impact Sciences, November 2022. See Attachment 1 to this Errata for calculation data.

CONCLUSION

Mitigation Measure AQ-1 is not required to reduce air quality impacts to less than significant and it does not change the original analysis in the IS/MND which found the Ordinance will not cause any foreseeable significant air quality impacts.

The imposition of AQ-1 does not constitute a substantial change that would require major revision to the previously published IS/MND due to new or increased impacts as they do not substantially change the Project. In fact, with the addition of the MM AQ-1, as shown in Table 1 above, air quality emissions associated with short-term and temporary abandonment related activities would be reduced even further.

As such, none of these changes substantially modify the analysis or conclusions of the document, but instead further substantiate conclusions and/or clarify aspects of the previously circulated document.

Attachments

Attachment 1 - Oil and Gas Well Abandonment Emissions with Tier 4, Model Output

Table of Contents

- 1. Basic Project Information
- 1.1. Basic Project Information
- 1.2. Land Use Types
- 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
- 2.1. Construction Emissions Compared Against Thresholds
- 2.2. Construction Emissions by Year, Unmitigated
- 3. Construction Emissions Details
- 3.1. Demolition (2024) Unmitigated
- 4. Operations Emissions Details
- 4.10. Soil Carbon Accumulation By Vegetation Type
- 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
- 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
- 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated

5. Activity Data

- 5.1. Construction Schedule
- 5.2. Off-Road Equipment
- 5.2.1. Unmitigated
- 5.3. Construction Vehicles
- 5.3.1. Unmitigated
- 5.4. Vehicles
- 5.4.1. Construction Vehicle Control Strategies
- 5.5. Architectural Coatings
- 5.6. Dust Mitigation
- 5.6.1. Construction Earthmoving Activities
- 5.6.2. Construction Earthmoving Control Strategies
- 5.7. Construction Paving
- 5.8. Construction Electricity Consumption and Emissions Factors
- 5.18. Vegetation
- 5.18.1. Land Use Change
- 5.18.1.1. Unmitigated

8. User Changes to Default Data 6. Climate Risk Detailed Report 7. Health and Equity Details 7.6. Health & Equity Custom Measures 7.5. Evaluation Scorecard 7.4. Health & Equity Measures 7.3. Overall Health & Equity Scores 7.2. Healthy Places Index Scores 7.1. CalEnviroScreen 4.0 Scores 6.4. Climate Risk Reduction Measures 6.3. Adjusted Climate Risk Scores 6.2. Initial Climate Risk Scores 6.1. Climate Risk Summary 5.18.2. Sequestration 5.18.1. Biomass Cover Type 5.18.2.1. Unmitigated 5.18.1.1. Unmitigated

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	City of LA Oil & Gas - Abandonment
Lead Agency	Los Angeles
Land Use Scale	Project/site
Analysis Level for Defaults	County
Windspeed (m/s)	0.50
Precipitation (days)	16.8
Location	34.0545406568893, -118.24387235523815
County	Los Angeles-South Coast
City	Los Angeles
Air District	South Coast AQMD
Air Basin	South Coast
TAZ	4039
EDFZ	10
Electric Utility	Los Angeles Department of Water & Power
Gas Utility	Southern California Gas

1.2. Land Use Types

I	I	I	0.00	0.00	1.00	User Defined Unit	1.00	User Defined Industrial
Description	Population	Special Landscape Area (sq ft)	Landscape Area (sq ft)	Building Area (sq ft)	Lot Acreage	Unit		Land Use Subtype

1.3. User-Selected Emission Reduction Measures by Emissions Sector

No measures selected

2. Emissions Summary

2.1. Construction Emissions Compared Against Thresholds

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

											/							
Un/Mit.	TOG	ROG	NOX	8	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5D PM2.5T BCO2		NBCO2 CO2T	CO2T	CH4	N20	R	CO2e
Daily, Summer (Max)	l	I	I	I	I	l	I	l	I	I	I	l	I	I	I	I	I	I
Unmit.	0.42	0.35	2.30	7.39	0.01	0.06	0.32	0.38	0.06	0.08	0.14	Ι	1,355	1,355	0.06	0.05	1.61	1,374
Average Daily (Max)	I	l	I	l	l	I	I	I	I	I	I	I	I		I	I		
Unmit.	0.01	0.01	0.06	0.20	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	I	36.8	36.8	< 0.005	< 0.005	0.02	37.3
Annual (Max)	I	I	I	I	I	I	I	I	ļ	l	I	I	ļ	I	I	I	I	I
Unmit.	< 0.005	< 0.005 0.01	0.01	0.04	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005 < 0.005			6.10	6.10	< 0.005	< 0.005	< 0.005 < 0.005 < 0.005 6.18	6.18

2.2. Construction Emissions by Year, Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Da (Ma	202	Da Sui (Ma	Yea
Daily - Winter (Max)		Daily - Summer (Max)	Year
	0.42	I	TOG
I	0.35	I	ROG
	2.30	I	NOX
	7.39	I	8
	0.01	I	SO2
l	0.06	l	PM10E PM10D PM10T PM2.5E
l	0.32	I	PM10D
l	0.38	I	PM10T
l	0.06	l	
l	0.08	l	PM2.5D
l	0.14	I	PM2.5T
l		l	BCO2
l	1,355 1,355	I	PM2.5D PM2.5T BCO2 NBCO2 CO2T CH4 N2O
l	1,355	l	CO2T
	0.06	I	CH4
ļ	0.05		N20
l	1.61		R
	1,374		CO2e

2024	Annual	2024	Average Daily
< 0.005	Ι	0.01	Ι
< 0.005 0.01	Ι	0.01	Ι
		0.06	Ι
0.04	Ι	0.20	I
< 0.005 < 0.005	Ι	< 0.005	Ι
< 0.005	Ι	< 0.005	Ι
< 0.005	Ι	0.01	I
< 0.005 < 0.005		0.01	Ι
< 0.005		< 0.005	Ι
< 0.005	Ι	< 0.005	Ι
< 0.005		< 0.005	Ι
I	Ι	I	I
6.10		36.8	Ι
6.10	Ι	36.8	I
< 0.005	Ι	< 0.005	Ι
< 0.005	Ι	< 0.005	I
< 0.005		0.02	I
6.18	1	37.3	Ι

3. Construction Emissions Details

3.1. Demolition (2024) - Unmitigated

Criteria Pollutants (lb/dav for daily. ton/yr for annual) and GHGs (lb/dav for daily. MT/yr for annual)

	Onsite truck	Demolitio —	Off-Road (Equipment	Average Daily	Daily, Winter (Max)	Onsite truck	Demolitio —	Off-Road (Equipment	Daily, Summer (Max)	Onsite	Location	Criteria
	0.00	l	0.01 nt		I	0.00		0.30 ^{nt}	I	I	TOG	Pollulan
	0.00	I	0.01			0.00		0.26		I	ROG	ts (ib/da)
	0.00	I	0.05		l	0.00		1.89			NOX	/ IOF Gall
	0.00	l	0.16		I	0.00	I	5.75		I	8	y, ton/yr
	0.00	l	< 0.005		I	0.00	I	0.01		I	SO2	for annu
	0.00	I	< 0.005		I	0.00		0.06		l	PM10E	iai) and i
	0.00	0.00				0.00	0.00				PM10D	וו) צטדט
	0.00	0.00	< 0.005		ļ	0.00	0.00	0.06		I	PM10T	Criteria Pollutants (lo/day for daily, ton/yr for annual) and GHGS (lo/day for daily, M1.
6 / 19	0.00	I	< 0.005		l	0.00	I	0.06		I	PM2.5E	dally, iv
	0.00	0.00				0.00	0.00			I	PM2.5D	
	0.00	0.00	< 0.005			0.00	0.00	0.06		I	PM2.5T	yr for annual)
	I	I			ļ		I	I		I	BCO2	
	0.00	I	23.3			0.00		852			NBCO2	
	0.00	I	23.3			0.00		852			CO2T	
	0.00	I	< 0.005	I	I	0.00	I	0.03	I	I	CH4	
	0.00	I	< 0.005	I	I	0.00	I	0.01	I	I	N20	
	0.00	I	I	I	I	0.00	I	I	I	l	ת	
	0.00	I	23.4	I	I	0.00	I	855	I		CO2e	

City
Q
Ē
≻
Ο
×.
y of LA Oil & Gas -
÷
s - Abandonment Detailed Rep
ar
đ
9
Ē
ē
Ħ
D
et e
aile
ed
ਸ
Ô
8
port,
<u> </u>
1
1/11/20:
12
0
22

Hauling Hauling Average Daily Hauling Daily, Summer (Max) Offsite Onsite Annual Vendor Worker Annual Daily, Winter (Max) Worker truck ⊐ Equipment Vendor Worker Vendor Demolitio – Off-Road < 0.005 < 0.005 0.10 0.00 0.00 0.00 0.02 0.00 I < 0.005 < 0.005 < 0.005 0.00 < 0.005 < 0.005 0.00 0.00 0.01 0.09 0.00 < 0.005 < 0.005 < 0.005 I 0.01 < 0.005 < 0.005 0.00 0.00 0.01 0.00 0.31 0.10 < 0.005 0.00 I 0.00 0.01 0.00 0.04 0.00 0.14 0.00 0.03 < 0.005 1.51 < 0.005 I < 0.005 0.00 < 0.005 0.00 0.00 0.00 < 0.005 0.00 < 0.005 0.00 0.00 0.00 < 0.005 0.00 0.00 0.00 0.00 0.00 0.00 < 0.005 < 0.005 < 0.005 < 0.005 0.00 0.00 0.02 0.00 0.02 0.00 < 0.005 < 0.005 0.00 I < 0.005 Ι < 0.005 < 0.005 0.00 < 0.005 0.00 0.00 0.02 0.02 0.00 0.00 < 0.005 < 0.005 0.00 < 0.005 0.00 0.00 0.00 0.00 < 0.005 0.00 < 0.005 < 0.005 0.00 0.00 0.00 0.01 0.00 0.00 < 0.005 0.00 0.00 0.00 0.00 < 0.005 I < 0.005 0.00 0.01 0.00 0.00 < 0.005 0.00 < 0.005 0.00 0.00 0.00 0.00 I I 1 I I Ι 0.00 1.00 0.00 6.05 7.44 0.00 3.87 1.23 221 282 0.00 I 0.00 0.00 0.00 3.87 1.00 1.23 6.05 7.44 282 0.00 221 I 0.00 < 0.005 0.00 < 0.005 < 0.005 < 0.005 0.00 0.01 0.01 0.00 < 0.005 Ι Ι < 0.005 < 0.005 0.00 0.00 0.04 0.01 0.00 < 0.005 < 0.005 0.00 < 0.005 I 0.01 0.00 0.01 0.00 0.50 1.11 0.00 0.00 < 0.005 Τ < 0.005 l I T I 1.05 0.00 0.00 6.36 7.54 3.88 1.25 0.00 232 287 0.00 I

Operations Emissions Details

7/19

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

noperationoper	Itants (lb/day for daily, ton/yr
	nts (lb/day for daily, ton/yr
	ay tor daily, ton/yr
	lly, ton/yr
	for ann
	ual) and
	GHGs (I
I I I I I I I I I I I I I I I I I I I I I	b/day to
	r daily, N
	1 /yr for
I I I I I I I I I I I I I I I I I I I I I	/yr tor annual)
	2

. 5 112/22 ÷. ł 2 d GHGe (Ih/ds • -2

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Total	Annual	Total	Daily, Winter (Max)	Total	Daily, Summer (Max)	Land Use
		1	I	1	I	Land TOG ROG NOX CO SO2 PM10E PM10D PM10T PM2.5E PM2.5D PM2.5T Use
		1				ROG
Ι	Ι	I				NOX
I		I	I		I	8
I		I	I		I	SO2
I		I	I		I	PM10E
1	1	I	I	1	I	PM10D
I		I	I		I	PM10T PM2.5E
		1	I		I	PM2.5E
I		I	I		I	PM2.5D
1	1	I	I		I	PM2.5D PM2.5T BCO2
		1	I		I	BCO2
		1	I		I	NBCO2 CO2T CH4
		1				CO2T
		1	I		I	
		1	I		I	N2O
		1	I	1	I	₽
			I		I	CO2e

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

Subtotal	Avoided	Annual	I	Subtotal	Remove d	Subtotal	Sequest ered	Subtotal	Avoided	Daily, Winter (Max)	I	Subtotal	Remove d	Subtotal	Sequest ered	Subtotal	Avoided	Daily, Summer (Max)	Species
		1	I	-	l		-			I	I								Species TOG ROG NOX CO SO2 PM10E PM10D PM10T PM2.5E
Ι	I	1	1	1	I	1	I		I		I	I				I	I		ROG
Ι	ļ	1	I	1	Ι	1	I	1	I		I	I		1		1	I	I	NOX
Ι	I	I	I	I	Ι	I	Ι	I	I	I	I	I	ļ	I	I	I	I	I	
Ι	I	I	I	Ι	I	I	I	1	I	I	I	I		1		I	I	l	SO2
Ι	I	1	I	Ι	ļ	I	ļ	1	I	I	I	I	ļ	1	I		I	I	PM10E
Ι	ļ	I	I	Ι	I	I	I	I	I	I	ļ	l	I		I	l	ļ	I	PM10D
Ι	I	I	I	Ι	I	I	I	I	I	I	I	I			I		I	I	PM10T
Ι	I	I	I	Ι	Ι	I	I	I	I		I	I				I	I		PM2.5E
Ι		I		Ι	Ι	I	Ι					I	Ι						PM2.5D
				I	I								I						
												I							BCO2
																			NBCO2
				I															CO2T
				·															CH4
																			N20
	·																		7
								Ι			1					I	1		CO2e

I	Subtotal —	Remove –	Subtotal	Sequest
Ι	I	I	Ι	1
Ι	Ι	I	Ι	Ι
Ι	Ι	I	Ι	1
Ι	Ι	l		Ι
Ι	Ι	I		1
Ι	Ι	I		Ι
Ι				1
Ι	I	I		1
I	I			1
Ι	I			1
Ι	I			1
Ι	I	I		1
I	I			1
I				1
Ι				1
Ι				1
I			1	1
I				1

5. Activity Data

5.1. Construction Schedule

Abandonment	Phase Name
Demolition	Phase Type
6/1/2024	Start Date
6/14/2024	End Date
5.00	Days Per Week
10.0	Work Days per Phase
Ι	Phase Description

5.2. Off-Road Equipment

5.2.1. Unmitigated

Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
Abandonment	Bore/Drill Rigs	Diesel	Average	1.00	8.00	33.0	0.73
Abandonment	Pumps	Diesel	Tier 4 Final	1.00	1.00	367	0.40
Abandonment	Welders	Diesel	Tier 4 Final	1.00	6.00	84.0	0.37
Abandonment	Tractors/Loaders/Backh Diesel	Diesel	Tier 4 Final	1.00	6.00	84.0	0.37

5.3. Construction Vehicles

5.3.1. Unmitigated

	c			
--	---	--	--	--

Abandonment	Abandonment	Abandonment	Abandonment	Abandonment
Onsite truck	Hauling	Vendor	Worker	Ι
1	0.00	6.00	20.0	Ι
1	20.0	10.2	18.5	Ι
ННОТ	HHDT	HHDT	LDA,LDT1,LDT2	I

5.4. Vehicles

5.4.1. Construction Vehicle Control Strategies

Non-applicable. No control strategies activated by user.

5.5. Architectural Coatings

Costed (ca ft)	Coated (sq ft)	(sq ft)	(sq ft)	
nterior Area Non-Residential Exterior Area Parking Area Coated (sq ft)	r Area Coated Non-Residential Interior Ar	Residential Exterior	Residential Interior Area Coated	Phase Name

5.6. Dust Mitigation

5.6.1. Construction Earthmoving Activities

Phase Name	Material Imported (cy)	Material Exported (cy)	Acres Graded (acres)	Material Demolished (sq. ft.)	Acres Paved (acres)
Abandonment	0.00	0.00	0.00	1	1

5.6.2. Construction Earthmoving Control Strategies

Control Strategies Applied	Frequency (per day)	PM10 Reduction	PM2.5 Reduction
Water Exposed Area	Ν	61%	61%
Water Demolished Area	N	36%	36%

5.7. Construction Paving

Land Use Area Paved (acres)	es)	% Asphalt
User Defined Industrial 0.00		0%
FO Construction Electricity Construction and Emissions Ecotors		

5.8. Construction Electricity Consumption and Emissions Factors

kWh per Year and Emission Factor (lb/MWh)

Year	kWh per Year	CO2	CH4	N2O
2024	0.00	069	0.05	0.01

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

Vegetation Land Use Type	Vegetation Soil Type	Initial Acres	Final Acres

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

Biomass Cover Type	Initial Acres	Final Acres
5.18.2. Sequestration		
5.18.2.1. Unmitigated		
Tree Type Number	Electricity Saved (kWh/year)	Natural Gas Saved (btu/year)

6. Climate Risk Detailed Report

6.1. Climate Risk Summary

emissions will continue to rise strongly through 2050 and then plateau around 2100. Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG

Climate Hazard	Result for Project Location	Unit
Temperature and Extreme Heat	9.52	annual days of extreme heat
Extreme Precipitation	6.15	annual days with precipitation above 20 mm
Sea Level Rise	0.00	meters of inundation depth
Wildfire	0.00	annual hectares burned

historical data (32 climate model ensemble from Cal-Adapt, 2040-2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed

day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about 3/4 an inch of rain, which would be light to moderate rainfall if received over a ful

possibilities (MIROC5). Each grid cell is 50 meters (m) by 50 m, or about 164 feet (ft) by 164 ft. different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature increments of sea level rise coupled with extreme storm events. Users may select from four model simulations to view the range in potential inundation depth for the grid cell. The four simulations make Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (2040-2059 average under RCP 8.5), and consider different

possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040-2059 average under RCP 8.5), and consider historical data of climate

6.2. Initial Climate Risk Scores

Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
1	0	0	N/A
N/A	N/A	N/A	N/A
1	0	0	N/A
1	0	0	N/A
N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A
0	0	0	N/A
	Exposure Score 1 N/A 1 N/A N/A N/A N/A N/A N/A		Sensitivity Score 0 N/A 0 N/A N/A N/A N/A N/A N/A 0

exposure. The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest

greatest ability to adapt. The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures

6.3. Adjusted Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	1			Ν
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	7			Ν
Wildfire	1		<u> </u>	Ν
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack	N/A	N/A	N/A	N/A
Air Quality	-	1		2

exposure The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest

greatest ability to adapt. The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the

6.4. Climate Risk Reduction Measures The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Exposure Indicators	
AQ-Ozone	53.7

AQ-PM	91.9
AQ-DPM	98.4
Drinking Water	92.5
Lead Risk Housing	
Pesticides	29.8
Toxic Releases	79.6
Traffic	86.0
Effect Indicators	
CleanUp Sites	92.5
Groundwater	86.1
Haz Waste Facilities/Generators	93.1
Impaired Water Bodies	66.7
Solid Waste	96.0
Sensitive Population	
Asthma	26.3
Cardio-vascular	35.9
Low Birth Weights	
Socioeconomic Factor Indicators	
Education	46.2
Housing	
Linguistic	91.2
Poverty	60.5
Unemployment	88.4

7.2. Healthy Places Index Scores

Indicator

The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

Result for Project Census Tract

Economic	
Above Poverty	
Employed	
Median HI	
Education	
Bachelor's or higher	
High school enrollment	
Preschool enrollment	
Transportation	
Auto Access	
Active commuting	
Social	
2-parent households	
Voting	
Neighborhood	
Alcohol availability	
Park access	
Retail density	
Supermarket access	
Tree canopy	
Housing	
Homeownership	
Housing habitability	
Low-inc homeowner severe housing cost burden	
Low-inc renter severe housing cost burden	
Uncrowded housing	
Health Outcomes	

99.4	Children
0.0	SLR Inundation Area
0.0	Wildfire Risk
1	Climate Change Exposures
1.0	No Leisure Time for Physical Activity
0.0	Current Smoker
65.1	Binge Drinking
	Health Risk Behaviors
2.6	Stroke
0.1	Physical Health Not Good
0.0	Pedestrian Injuries
0.1	Obesity
14.8	Chronic Kidney Disease
0.4	Mental Health Not Good
89.4	Heart Attack ER Admissions
0.1	Physically Disabled
0.1	Cognitively Disabled
0.0	Life Expectancy at Birth
1.8	Diagnosed Diabetes
0.8	Chronic Obstructive Pulmonary Disease
3.9	Coronary Heart Disease
13.4	Asthma
96.9	Cancer (excluding skin)
4.9	High Blood Pressure
76.4	Asthma ER Admissions
42.6	Arthritis
1	Insured adults

Elderly	84.2
English Speaking	0.0
Foreign-born	0.0
Outdoor Workers	98.2
Climate Change Adaptive Capacity	
Impervious Surface Cover	6.2
Traffic Density	0.0
Traffic Access	87.4
Other Indices	
Hardship	0.0
Other Decision Support	
2016 Voting	0.0

7.3. Overall Health & Equity Scores

Metric	Result for Project Census Tract
CalEnviroScreen 4.0 Score for Project Location (a)	90.0
Healthy Places Index Score for Project Location (b)	
Project Located in a Designated Disadvantaged Community (Senate Bill 535)	Yes
Project Located in a Low-Income Community (Assembly Bill 1550)	Yes
Project Located in a Community Air Protection Program Community (Assembly Bill 617)	6

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

7.4. Health & Equity Measures

No Health & Equity Measures selected. 7.5. Evaluation Scorecard

Health & Equity Evaluation Scorecard not completed.

7.6. Health & Equity Custom Measures

No Health & Equity Custom Measures created.

8. User Changes to Default Data

Screen	Justification
Land Use	1 acre per well site
Construction: Construction Phases	abandonment to last approximately 10 days per well.
Construction: Off-Road Equipment	equipment for abandonment
Construction: Trips and VMT	trips/deliveries per abandonment needs